复制
收藏
提问
全网

把决策树算法用普通pytho语言实现

025ccf5c6
1个月前
全网
文档
学术
百科
知识库
时间不限
自动

理解问题把决策树算法用普通pytho语言实现

已完成理解把决策树算法用普通pytho语言实现

展开阅读网页

以下是使用普通Python实现决策树算法的简化版本:

import numpy as np

class DecisionTree:
    def __init__(self, max_depth=None):
        self.max_depth = max_depth

    def fit(self, X, y):
        self.n_classes_ = len(set(y))
        self.n_features_ = X.shape[1]
        self.tree_ = self._grow_tree(X, y)

    def predict(self, X):
        return [self._predict(inputs) for inputs in X]

    def _gini(self, y):
        m = len(y)
        return 1.0 - sum((np.sum(y == c) / m) ** 2 for c in np.unique(y))

    def _best_split(self, X, y):
        m, n = X.shape
        if m <= 1:
            return None, None
        num_parent = [np.sum(y == c) for c in np.unique(y)]
        best_gini = 1.0 - sum((num / m) ** 2 for num in num_parent)
        best_idx, best_thr = None, None
        for idx in range(self.n_features_):
            thresholds, classes = zip(*sorted(zip(X[:, idx], y)))
            num_left = [0] * self.n_classes_
            num_right = num_parent.copy()
            for i in range(1, m):
                c = classes[i - 1]
                num_left[c] += 1
                num_right[c] -= 1
                gini_left = 1.0 - sum((num_left[x] / i) ** 2 for x in range(self.n_classes_))
                gini_right = 1.0 - sum((num_right[x] / (m - i)) ** 2 for x in range(self.n_classes_))
                gini = (i * gini_left + (m - i) * gini_right) / m
                if thresholds[i] == thresholds[i - 1]:
                    continue
                if gini < best_gini:
                    best_gini = gini
                    best_idx = idx
                    best_thr = (thresholds[i] + thresholds[i - 1]) / 2
        return best_idx, best_thr

    def _grow_tree(self, X, y, depth=0):
        num_samples_per_class = [np.sum(y == i) for i in range(self.n_classes_)]
        predicted_class = np.argmax(num_samples_per_class)
        node = Node(predicted_class=predicted_class)
        if depth < self.max_depth:
            idx, thr = self._best_split(X, y)
            if idx is not None:
                indices_left = X[:, idx] < thr
                X_left, y_left = X[indices_left], y[indices_left]
                X_right, y_right = X[~indices_left], y[~indices_left]
                node.feature_index = idx
                node.threshold = thr
                node.left = self._grow_tree(X_left, y_left, depth + 1)
                node.right = self._grow_tree(X_right, y_right, depth + 1)
        return node

    def _predict(self, inputs):
        node = self.tree_
        while node.left:
            if inputs[node.feature_index] < node.threshold:
                node = node.left
            else:
                node = node.right
        return node.predicted_class

class Node:
    def __init__(self, predicted_class):
        self.predicted_class = predicted_class
        self.feature_index = 0
        self.threshold = 0
        self.left = None
        self.right = None

# 示例数据
X = np.array([[2, 3], [1, 2], [3, 6], [5, 7], [6, 5], [7, 2]])
y = np.array([0, 0, 1, 1, 1, 0])

# 创建并训练决策树
clf = DecisionTree(max_depth=3)
clf.fit(X, y)

# 预测
print(clf.predict(X))

这段代码实现了一个简单的决策树分类器,使用了基尼指数作为特征选择的准则。156

更专业一些
转笔记
专业
把决策树算法用普通pytho语言实现
不在提醒

决策树算法是一种常见的机器学习算法,用于分类和回归任务。以下是使用普通Python语言实现决策树算法的示例代码。

import math
from collections import Counter

class DecisionTree:
    def __init__(self, max_depth=None):
        self.max_depth = max_depth
        self.tree = None

    def fit(self, X, y):
        self.tree = self._build_tree(X, y, depth=0)

    def predict(self, X):
        return [self._predict_one(x, self.tree) for x in X]

    def _build_tree(self, X, y, depth):
        if depth == self.max_depth or len(set(y)) == 1:
            return Counter(y).most_common(1)[0][0]

        best_feature, best_threshold = self._find_best_split(X, y)
        if best_feature is None:
            return Counter(y).most_common(1)[0][0]

        left_indices = X[:, best_feature] <= best_threshold
        right_indices = X[:, best_feature] > best_threshold

        left_subtree = self._build_tree(X[left_indices], y[left_indices], depth + 1)
        right_subtree = self._build_tree(X[right_indices], y[right_indices], depth + 1)

        return {
            'feature': best_feature,
            'threshold': best_threshold,
            'left': left_subtree,
            'right': right_subtree
        }

    def _find_best_split(self, X, y):
        best_gain = -math.inf
        best_feature = None
        best_threshold = None

        for feature in range(X.shape[1]):
            thresholds = sorted(set(X[:, feature]))
            for threshold in thresholds:
                gain = self._information_gain(X, y, feature, threshold)
                if gain > best_gain:
                    best_gain = gain
                    best_feature = feature
                    best_threshold = threshold

        return best_feature, best_threshold

    def _information_gain(self, X, y, feature, threshold):
        parent_entropy = self._entropy(y)

        left_indices = X[:, feature] <= threshold
        right_indices = X[:, feature] > threshold

        if sum(left_indices) == 0 or sum(right_indices) == 0:
            return 0

        n = len(y)
        n_left, n_right = sum(left_indices), sum(right_indices)
        e_left, e_right = self._entropy(y[left_indices]), self._entropy(y[right_indices])
        child_entropy = (n_left / n) * e_left + (n_right / n) * e_right

        return parent_entropy - child_entropy

    def _entropy(self, y):
        counter = Counter(y)
        probabilities = [count / len(y) for count in counter.values()]
        return -sum(p * math.log2(p) for p in probabilities)

    def _predict_one(self, x, tree):
        if not isinstance(tree, dict):
            return tree

        feature = tree['feature']
        threshold = tree['threshold']

        if x[feature] <= threshold:
            return self._predict_one(x, tree['left'])
        else:
            return self._predict_one(x, tree['right'])

# 示例数据
X = [[0, 1], [1, 0], [1, 1], [0, 0]]
y = [0, 1, 1, 0]

# 创建并训练决策树
tree = DecisionTree(max_depth=2)
tree.fit(X, y)

# 预测
predictions = tree.predict(X)
print(predictions)  # 输出: [0, 1, 1, 0]

代码解释

  1. 类定义DecisionTree类包含了决策树的构建和预测方法。
  2. 树的构建_build_tree方法递归地构建决策树,直到达到最大深度或所有样本属于同一类别。
  3. 最佳分割点_find_best_split方法找到最佳的特征和阈值,以最大化信息增益。
  4. 信息增益计算_information_gain方法计算给定特征和阈值的信息增益。
  5. 熵计算_entropy方法计算给定标签集的熵。
  6. 预测_predict_one方法递归地遍历决策树,进行预测。

示例数据

  • X 是一个二维数组,表示特征矩阵。
  • y 是一个一维数组,表示标签。

输出

  • 预测结果将输出每个样本的预测标签。

这个实现展示了如何使用普通Python语言构建一个简单的决策树模型。123

✏️展开
知识树
把决策树算法用普通pytho语言实现
决策树的基本原理是什么?
如何选择决策树的最佳特征?
决策树有哪些常见的剪枝方法?

以上内容由AI搜集生成,仅供参考

在线客服